

Improving workflow
in global volunteer projects


Introduction to my Ph.D. research


Martin F. Krafft <madduck@debian.org>


Debian developer, author of The Debian System
Ph.D. student at the Univ. of Limerick, Ireland


FOSDEM 2006, 25/26 Feb 2006, Brussels, Belgium







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 2


Improving workflow
in global volunteer projects Debian


Introduction to my Ph.D. research


Martin F. Krafft <madduck@debian.org>


Debian developer, author of The Debian System
Ph.D. student at the Univ. of Limerick, Ireland


FOSDEM 2006, 25/26 Feb 2006, Brussels, Belgium







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 3


... and some others (Zope, Plone, ...)







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 4


My motivation


∙ I live Debian


∙ Debian has some antiquated processes


∙ Silly to say that Debian won't survive


∙ Improvements could get us further though


∙ Facilitate contributions by everyone:


...







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 5


My motivation


If Jane Doe has 2 hours on a 
Saturday afternoon for Debian, she 


should not have to spend 1.5 of 
those figuring out how to contribute.







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 6


So you're a Ph.D.?
Wow! Just don't touch anything!


∙ Doing this as a Ph.D. has advantages:


∙ Feeling good about spending all your time on 
Debian.


∙ A great community.


∙ Motivation to publish (think: documentation).


∙ Research as backup.


∙ Research as gateway to new approaches.







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 7


So you're a Ph.D.?
Wow! Just don't touch anything!


∙ Doing this as a Ph.D. is neutral:


∙ A "Debian Ph.D." does not buy me anything 
within the project.
(Thus motivation to actually produce results.)







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 8


So you're a Ph.D.?
Wow! Just don't touch anything!


∙ Doing this as a Ph.D. has disadvantages:


∙ I will need to finish sometime. Urks.







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 9


Research model


∙ "Participatory action research":


∙ practically grounded (not academic)


∙ aimed to solve an immediate problem


∙ researcher is part of the study


∙ "complex systems cannot be reduced, they 
are best studied by introducing changes"


--> new AI reference







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 10


Back to the topic:


How can (some of) Debian's processes 
be improved/integrated to allow for 


more efficient cooperation?







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 11


Impact


∙ Make things easier for Debian contributors


∙ Allow for better integration of works by 
derivatives


∙ Give Debian (again) a competitive edge and 
more resources to walk new paths


∙ Also: business. "Employees as volunteers"







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 12


Research in two parts


Develop improved processes and 
workflows, and devise migration paths


Determine conditions under which 
volunteer developers adopt improved 


models


Finally, mix, stir well, enjoy...







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 13


Related concepts


∙ Motivation of volunteers


∙ Ideas are entertainment,
real tools are worth considering


∙ Extreme programming / agile development


∙ Team development


∙ Documentation







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 14


Approach


∙ Analyse previous adoption of new tools


∙ debhelper / cdbs


∙ debuild / pbuilder


∙ lintian / linda


∙ devscripts


∙ dpatch


∙ BTS user tags


∙ VCS (*-buildpackage or other)


∙ ...







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 15


Approach


∙ Previous publications and efforts


∙ Surveys


∙ Interviews with developers


∙ Use-case studies


∙ (A lot of) experimentation (trial and error)







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 16


Let's leave it at that...


on to more exciting stuff...!







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 17


Three examples of
workflow improvements


∙ Debian stable and testing security


∙ Flexible package & patch management


∙ The package upload







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 18


Remember...


... these are just ideas.


(They need a lot of feedback!)







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 19


Debian security: current situation
stable testing


embargoed
secure-testing
 team


vendor sec


maintainer others


security.debian.org


Tracker


secure-testing
archiveNMU


MITRE: CVE


DTSA


DSA


forums / lists


public


obscured by clouds







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 20


Debian security: proposed situation
public


embargoed


vendor sec


maintainer


embargoed security team


DSA


security.debian.org


forums/list
bugtraq,
full-disc,
CVE, etc.


maintainer


others


security team


review/QA


testing security


DSA DTSA


stable-security


NMU


tracker







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 21


Debian security: status


∙ Work has begun after Debconf6


∙ security.debian.org is now RR


∙ Oldenburg security meeting


∙ Fluctuations in the stable security team


∙ dak restructuring to accomodate testing on 
security.debian.org


∙ Bi-weekly coordination meetings







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 22


Debian security: tracker outlook


∙ Analyse the current tracker


∙ Single 2Mb file in SVN


∙ It's simple, that's why secure-testing likes it


∙ People are concerned it won't scale


∙ Consider alternatives


∙ Most important is not to alienate current 
contributors, who are used to the SVN tracker


∙ Define and document a workflow


∙ Consider using the BTS in a structured way







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 23


Flexible patch/package handling


∙ Differentiate between management and 
maintenance (somewhat arbitrary):


∙ management is the package from outside:
how is cooperation coordinated?


∙ maintenance is inside the package:
how are patches tracked







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 24


Package management


∙ Currently, package management is done in 
about three different ways:


∙ local source tree


∙ centralised repository


∙ decentralised repository


∙ Probably some other ways, developers are 
creative







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 25


Package management:
Local source tree


archive


local tree preparation


incoming


local tree debdiff


BTS


NMU


maintainer


co-maintainers
others







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 26


Package management:
Local source tree


∙ Standard procedure


∙ Local tree, local package generation, upload


∙ Others can get the source with apt-get and 
prepare NMUs/diffs to be sent to the BTS


∙ This will (and should) always work


∙ Does not scale to co-maintenance with more 
than 2 maintainers or many/frequent 
contributions







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 27


Package management:
Centralised repository


repository


checkout


checkout


BTS


local preparation


incoming


checkout deb/repodiff


NMU


one maintainer


other maintainers


others


archive local tree







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 28


Package management:
Centralised repository


∙ Increasingly popular


∙ Examples: CVS, SVN


∙ Still, who uploads in the end? Bottleneck?


∙ Contributors must


∙ know where to check out, or use outdated 
source from archive (makes merges harder)


∙ learn the VCS and procedures


∙ Single point of failure w/o offline capability







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 29


Package management:
decentralised repository


repository


repository


repository


repository


incoming


preparation


BTS


archive local tree


debdiff


announcements/
coordination


one maintainer


preparation


other maintainers


others
NMU







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 30


Package management:
decentralised repository


∙ Examples: tla/baz, bzr, git, darcs


∙ Tight dependency on 
announcement/coordination medium (mailing 
list, patch queue manager)


∙ Who uploads in the end?


∙ Steep learning curve of decentralised VCS


∙ Must know where things are


∙ Difficult to keep track for outsiders







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 31


Package maintenance


∙ Approaches to track changes


∙ Three typical to local/no management


∙ no patch separation whatsoever (single diff)


∙ dpatch (dbs) / quilt


∙ Three are typical to VCS management


∙ no patch separation within package


∙ feature & integration branches


∙ stgit







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 32


Package maintenance condensed


∙ Four patterns:


∙ No tracking / single diff


∙ dpatch


∙ quilt / stgit


∙ feature & integration branches


∙ Probably more, developers are creative







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 33


Package maintenance:
No tracking / single diff


∙ Claim: by far most packages in the archive


∙ Procedure:


1. Obtain latest source tree


2. Make changes to the source


3. (Maybe) document changes in changelog


4. Build package


5. Upload


∙ Does not scale (at all; try it on libc6)







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 34


Package maintenance:
dpatch


∙ dpatch keeps patches separate


∙ Procedure:


1. Obtain latest package source


2. dpatch-edit-patch patch-name


3. Make changes pertaining to one feature


4. dpatch-edit-patch another-patch-name


5. Make changes pertaining to another feature


6. Build package


7. Upload







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 35


Package maintenance:
dpatch


∙ Keeps package tree clean


∙ Flat learning curve


∙ Patches can be scripts too


∙ May be difficult for contributors to identify a 
specific patch to manipulate


∙ Inter-patch dependencies are only linear


∙ Horrific conflict handling


∙ Slow







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 36


Brief intermission: Wig & Pen


∙ Evolutionary extension to dpkg


∙ Additional tarballs for subdirectories


∙ ...s_1.2.orig-xyz.tar.gz --> ... s-1.2/xyz


∙ debian/ directory can be a tarball with 
separate patches to the source (dpatch)


∙ Support for other types of archives (bz2, zip, 
...)







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 37


Package maintenance:
quilt / stgit


∙ Multiple "stacks" of patches


∙ Can be used like dpatch


∙ Supports multiple stacks
"one stack per feature"







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 38


Package maintenance:
quilt / stgit


∙ Procedure:


1. Obtain latest source package


2. "Pop" your way to the patch you wish to 
change (or add) down the appropriate feature 
stack


3. Make changes


4. Refresh the stack(s)


5. Build the package


6. Upload 







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 39


Package maintenance:
quilt / stgit


∙ Quilt stores locally, stgit uses a git repository


∙ Clean separation of features


∙ Suboptimal merging / conflict resolution


∙ Functionally equivalent to branches but 
without the advantages of a VCS


∙ Linear dependencies only


∙ No inter-stack dependencies







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 40


Package maintenance:
feature & integration branches


∙ Ideally with a VCS that has proper branch 
support: baz, bzr, git, SVN, darcs


∙ Keep upstream in a read-only branch
(maybe possible to use orig.tar.gz instead)


∙ Branch anew for each feature
./debian/ is also a feature


∙ Merge all feature branches into a merge-only 
integration branch







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 41


Package maintenance:
feature & integration branches


feature branch 1


integration
branch


upstream branch
or orig.tar.gz


feature branch 2


debian branch







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 42


Package maintenance:
feature & integration branches


∙ Procedure:


1. Checkout source tree to create branch,
or specific branch to work on


2. Make and commit changes


3. Integrate (merge) branch into integration 
branch


4. Build package based on integration branch


5. Upload







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 43


Package maintenance:
feature & integration branches


∙ Scales very well


∙ Good merging / conflict resolution


∙ Clean separation of features


∙ Steep learning curve







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 44


Package maintenance: summary


∙ Every method has pros and cons (surprise!)


∙ dpatch is a very tangible approach which 
should be preferred over the single diff 
approach; suitable for simple packages with 
few maintainers


∙ branching is very flexible and might be the 
best choice for complex packages, or 
packages with many maintainers







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 45


Package management and 
maintenance combined


... can we somehow condense all pros 
into a new method and leave the cons 


behind?







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 46


My idea for package management:
In-Deb VCS


∙ Store decentralised VCS data in the Debian 
source package


∙ Provide intuitive frontend tools
(think dpkg-buildpackage)


∙ Provide a logical integration with the BTS


∙ Harness the VCS to facilitate and improve the 
upload process







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 47


In-Deb VCS and Launchpad/hct


∙ Canonical has Launchpad and hct, which 
have the same roots as In-Deb VCS


∙ Launchpad offers workflow components


∙ hct will become obligatory for Ubuntu


∙ Centralised, and not to be adopted by Debian


∙ But the intention is to coordinate and 
exchange with Canonical to keep the two 
approaches aligned







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 48


In-Deb VCS: differences from hct


∙ Uses mirror infrastructure, not centralised


∙ Integration with source package format


∙ Tighter integration with Debian methods:


∙ tracking in BTS, not Launchpad


∙ dak, not Launchpad


∙ In-Deb VCS is optional, compatible with other 
approaches







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 49


In-Deb VCS: introduction procedure


∙ Figure out how developers would like to work


∙ Interviews, questionaires


∙ Live sessions


∙ Make sure not to force its use: regular 
methods must continue to work


∙ Code, document, get it working


∙ Campaign and let it (not me) persuade 
people







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 50


Introducing Bazaar-NG


∙ A VCS developed by Canonical


∙ Decentralised approach


∙ Small, intuitive command set


∙ Python bindings


∙ Active, enthusiastic community, who are 
interested to support this use-case







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 51


In-Deb VCS: specifics


∙ .bzr/ directory stored in extra tarball and 
distributed across mirrors


∙ Consider integration with dpkg-source


∙ Address size concerns:


∙ Can .bzr replace diff.gz and debian.tar.gz?


∙ Size-efficient storage (weaves, knits)
Investigate using .orig as weave base


∙ Harness to-be-developed possibility to ghost 
revisions to external storage







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 52


In-Deb VCS: advantages


∙ Decentralised, mirrored repository


∙ Uses existing infrastructure, no changes 
needed beyond Wig & Pen possibilities


∙ All advantages of the VCS


∙ (bzr developers are mostly Debian people)







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 53


In-Deb VCS: challenges


∙ Slight size increase, if we get it right (mirrors)


∙ Dependency on bzr, Python
bzr/Python may need to be added to build-
essential


∙ ... probably many more







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 54


Upload requests


∙ Do not upload source + 1 binary package


∙ Instead, upload a request made up of


∙ Location of integration branch


∙ Certificates issued by lintian, piuparts, etc., 
signed by developer who ran them


∙ One or more developer signatures signing off 
the upload


∙ Components required for a request can be 
set on a per-package level







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 55


Upload requests: advantages


∙ Formalised integration of quality checks


∙ Less payload to be transfered to ftp-master


∙ All architectures built by Debian buildds


∙ Smooth transition possible:


∙ provide a server receiving upload requests


∙ checks certificates and signatures


∙ obtains package, builds it (probably i386)


∙ uploads to ftp-master







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 56


Summary


∙ Jane Doe should have an easier time 
contributing


∙ How to get people to adopt new methods


∙ Ideas for improved workflow


∙ Integrating stable and testing security


∙ Combining the cream of package 
management and maintenance approaches


∙ Upload requests instead of package uploads







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 57


Thank you for your attention!


Martin F. Krafft <madduck@debian.org>


http://martin-krafft.net/phd (wip)
http://people.debian.org/~madduck 


http://debiansystem.info







© Martin F. Krafft <madduck@debian.org>25 Feb 2006 58


Copyright & Licence


This presentation is © 2006 Martin F. Krafft


Available under the terms of the Artistic Licence






